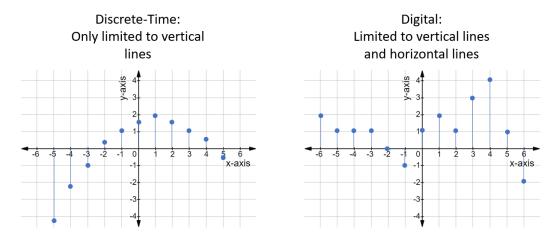
2.0 Introduction

Discrete-Time vs. Digital:

Discrete-Time	Digital
The independent variable (most commonly	Both the independent variable and dependent
time) is represented by a sequence of numbers of a fixed interval.	variable are represented by a sequence of numbers of a fixed interval.

Discrete-Time and Digital Signal examples are shown below:



Discrete-Time Systems and Digital Systems are defined by their inputs and outputs being both either Discrete-Time Signals or Digital Signals.

2.1 Discrete-Time Signals

Discrete-Time Signal x[x] is sequence for all integers n.

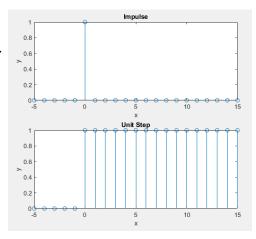
No result for non-integer n, undefined.

Unit Sample Sequence δ [n]: 1 at n=0, 0 otherwise. Unit Step u[n] = 1 at n>=0, 0 otherwise.

Or,
$$\mathbf{u}[\mathbf{n}] = \sum_{k=-0}^{\infty} \delta[\mathbf{n} - \mathbf{k}]$$

Any sequence: $x[n] = a1^* \delta[n-1] + a2^* \delta[n-2] + ...$ where a1, a2 are magnitude at integer n.

or,
$$x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$$

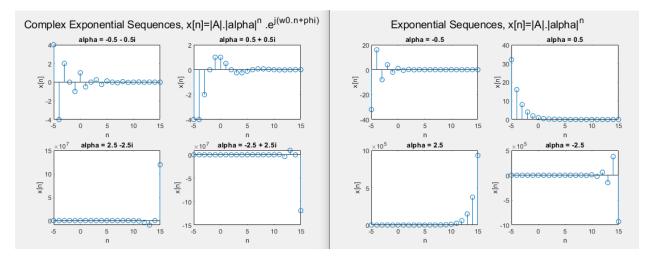


Exponential sequence: $x[n] = A \alpha^n$

where
$$\boldsymbol{\alpha}$$
 is complex, $\mathbf{x}[\mathbf{n}] = |\mathbf{A}| e^{j\phi} |\boldsymbol{\alpha}| e^{j\omega_0 \mathbf{n}} = |\mathbf{A}| |\boldsymbol{\alpha}|^{\mathbf{n}} e^{j(\omega_0 \mathbf{n} + \phi)}$
= $|\mathbf{A}| |\boldsymbol{\alpha}|^{\mathbf{n}} (\cos(\omega_0 \mathbf{n} + \phi) + j\sin(\omega_0 \mathbf{n} + \phi))$

Complex and sinusoidal: $-\pi < \omega_0 < \pi$ or $0 < \omega_0 < 2\pi$.

Exponential sequences for given α (complex α left, real α right):



Periodicity: x[n] = x[n+N], for all n. (definition). Period = N. Sinusoid: $x[n] = A\cos(\omega_0 n + \phi) = A\cos(\omega_0 n + \omega_0 N + \phi)$ Test: $\omega_0 N = 2\pi k$, (k is integer)

Exponential: $x[n] = e^{j\omega_0(n+N)} = e^{j\omega_0n}$, Test: $\omega_0 N = 2\pi k$, (k is integer)

2.2 Discrete-Time Systems

System: Applied transformation $y[n] = T\{x[n]\}$

Memoryless Systems:

Output $y[n_x]$ is only dependent on input $x[n_x]$ where the same index n_x is used for both (no time delay or advance).

Linear Systems: Adherence to superposition. The additive property and scaling property.

Additive property: Where $y_1[n] = T\{x_1[n]\}$ and $y_2[n] = T\{x_2[n]\}$,

 $y_2[n] + y_1[n] = T\{x_1[n] + x_2[n]\}.$

Scaling property: $T\{a.x[n]\} = a.y[n]$

Time-Invariant Systems:

Time shift of input causes equal time shift of output. $T\{x[n-M]\} = y[n-M]$

Causality:

The system is causal if output y[n] is only dependent on x[n+M] where $M \le 0$.

Stability:

Input x[n] and Output y[n] of system reach a maximum of a number less than infinity. Must hold for all values of n.

2.3 LTI Systems

Two Properties: Linear & Time-Invariant follows:

"Response" $h_k[n]$ describes how system behaves to impulse $\delta[n-k]$ occurring at n=k.

$$y[n] = T\{\sum_{k=-\infty}^{\infty} x[k]\delta[n-k]\} = \sum_{k=-\infty}^{\infty} x[k] h[n-k].$$

→ Convolution Sum: y[n] = x[n]*h[n].

Performing Discrete-Time convolution sum:

- 1. Identify bounds of x[k] (where x[k] is non-zero) as N_1 and N_2 .
- 2. Determine expression for x[k]h[n-k].
- 3. Solve for $y[n] = \sum_{k=N_1}^{N_2} x[k] \, h[n-k]$. General solution for exponential (else use tables): $\sum_{k=N_1}^{N_2} \alpha^k = \frac{\alpha^{N_1} \alpha^{N_2+1}}{1-\alpha}$.

Graphical solution: superposition of responses $h_k[n]$ for corresponding input x[n].

2.4 Properties of Linear Time-Invariant Systems

As LTI systems are described by convolution...

LTI is commutative: x[n]*h[n] = h[n]*x[n].

... is additive:
$$x[n]^*(h_1[n]+h_2[n]) = x[n]^*h_1[n] + x[n]^*h_2[n]$$
.

... is associative:
$$(x[n]*h_1[n])*h_2[n] = x[n]*(h_1[n]*h_2[n])$$

LTI is stable if the sum of impulse responses $\sum_{k=-\infty}^{\infty} |h[k]| < \infty$.

... is causal if
$$h[n] = 0$$
 for $n < 0$ (causality definition).

Finite-duration Impulse response (FIR) systems:

Impulse response h[n] has limited non-zero samples. Simple to determine stability (above). Infinite-duration impulse response (IIR) systems:

Example:
$$B_h = \sum_{n=0}^{\infty} |a|^n$$
. If a<1, B_h is stable and (using geom. series) $= \frac{1}{1-|a|} < \infty$.

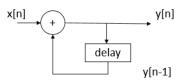
Delay on impulse response: $h[n] = \text{sequence}^*\text{delay} = (\delta[n+1] - \delta[n])^* \delta[n-1] = \delta[n] - \delta[n-1]$.

2.5 Linear Constant-Coefficient Difference Equations

System modifies another version or output of itself to produce new output.

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{m=0}^{M} x[n-m],$$

For example: Recursive difference equation block diagram:



As with diff eqns, use homogeneous solution and

particular solution.
$$y[n] = y_p[n] + y_h[n]$$
.

Where $y_h[n] = \sum_{m=1}^{N} A_m z_m^n$, and A_m chosen for auxiliary y[n] conditions.

2.6 Frequency-Domain Representation of Discrete-Time Signals & Systems

For complex exponentials:

Where
$$x[n] = e^{j\omega n}$$
,
and $H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}$,
 $y[n] = H(e^{j\omega}) e^{j\omega n}$.

 $e^{j\omega n}$ is the Eigenfunction of the system.

 $H(e^{j\omega})$ is the eigenvalue and frequency response. Always periodic (discrete).

$$H(e^{j(\omega+2\pi r)}) = H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j(\omega+2\pi)n}$$
.

- Need only specify $H(e^{j\omega})$ over one period $-\pi < \omega < \pi$. Low frequencies: closer to zero, high fr at $+-\pi$.
- \rightarrow Common to plot Magnitude, Phase for H($e^{j\omega}$).

Suddenly Applied Complex Exponential Inputs:

Consider inputs of form $x[n] = e^{j\omega n} u[n]$. (zero for n<0)

- \rightarrow y[n] = H(e^{j\omega}) e^{j\omega n} + $(\sum_{k=n+1}^{\infty} h[k]e^{-j\omega k})$ e^{jω n}.
- → Steady-state response $y_{ss}[n] = H(e^{j\omega}) e^{j\omega n}$.
- ightharpoonup Transient response $y_t[n] = -(\sum_{k=n+1}^{\infty} h[k]e^{-j\omega k}) e^{j\omega n}$. Def: difference of output from eigenfunction result.

Stability condition also ensures that frequency response function $|H(e^{j\omega})|$ exists:

$$\sum_{k=-\infty}^{\infty} |h[k]| < \infty.$$

2.7 Representation of Sequences by Fourier Transforms

Series representation by Fourier integral:

$$\begin{split} \mathbf{x}[\mathbf{n}] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega, \quad \text{(inverse Fourier transform)} \\ \text{where } \mathbf{X}(\mathbf{e}^{\mathrm{j}\omega}) &= \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}. \\ \text{Rectangular: } \mathbf{X}(\mathbf{e}^{\mathrm{j}\omega}) &= \mathbf{X}_{\mathbf{R}}(\mathbf{e}^{\mathrm{j}\omega}) + \mathbf{j} \; \mathbf{X}_{\mathbf{I}}(\mathbf{e}^{\mathrm{j}\omega}), \quad \text{Polar or mag,phase: } \mathbf{X}(\mathbf{e}^{\mathrm{j}\omega}) = |\; \mathbf{X}(\mathbf{e}^{\mathrm{j}\omega})| \; \mathbf{e}^{\mathrm{j}\angle\; \mathbf{X}(\mathbf{e}^{\wedge}\mathrm{j}\omega)}. \end{split}$$

Impulse Response via Fourier Transform integral:

$$h[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega.$$

Condition: Convergence, i.e. $|X(e^{j\omega})| \le \sum_{k=-\infty}^{\infty} |x[n]| < \infty$,

 \rightarrow X(e^{j ω}) exists.

2.8 Symmetry Properties of the Fourier Transform

Conjugate-symmetric sequence: $x_e[n] = x_e^*[-n]$.

Conjugate-antisymmetric sequence: $x_0[n] = -x_0^*[-n]$.

Sequence is sum of above parts: $x[n] = x_0[n] + x_e[n]$.

FT follows: $X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})$.

Applicable for general complex sequences:

Sequence x[n]	FT X(e ^{jω})
x*[n]	$X^*(e^{-j\omega})$
x*[-n]	$X^*(e^{j\omega})$
Re{ x[n]}	$X_{e}(e^{j\omega})$
j.Im{ x[n]}	$X_o(e^{j\omega})$
$x_e[n]$	$X_R(e^{j\omega}) = Re\{X(e^{j\omega})\}$
$x_0[n]$	$X_{Im}(e^{j\omega}) = j.Im\{X(e^{j\omega})\}$

2.9 Fourier Transform Theorems

Fourier Transform notation:

$$X(e^{j\omega}) = F\{x[n]\}$$

$$x[n] = F^{-1}\{X(e^{j\omega})\}$$

$$x[n] \leftarrow F \rightarrow X(e^{j\omega}).$$

Linearity of Fourier Transform:

$$ax[n] + by[n] = a X(e^{j\omega}) + b Y(e^{j\omega}).$$

Time Shifting, Frequency Shifting Theorem:

$$x[n-m] = e^{j\omega m} X(e^{j\omega}).$$

$$e^{j\omega 0n}x[n] \leftarrow F \rightarrow X(e^{j(\omega - \omega 0)}).$$

Time Reversal Theorem:

$$x[-n] \leftarrow F \rightarrow X(e^{-j\omega}).$$

If x[n] is real, then $x[-n] \leftarrow F \rightarrow X^*(e^{j\omega})$.

Differentiation in Frequency Theorem:

$$n \times [n] \leftarrow F \rightarrow j \frac{dX(e^{j\omega})}{d\omega}.$$

Parseval's Theorem:

Energy Density Spectrum: $|X(e^{j\omega})|^2$

$$E = \sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(ej\omega)|^2 d\omega.$$

Convolution Theorem:

Where
$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k] = x[n]*h[n]$$
, (def. convolution)
 $Y(e^{j\omega}) = X(e^{j\omega}) H(e^{j\omega})$.

Modulation or Windowing Theorem:

Where y[n] = x[n] w[n] (multiplication),
$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\vartheta}) W(e^{j(\omega-\vartheta)}) d\vartheta. \text{ (periodic convolution)}$$

See table 2.3 in book for Fourier Transform Pairs (page 62).

2.10 Discrete-Time Random Signals

Modeling sequence as random signal. Signal is member of ensemble of D-Time signals. Individual sample x[n] is an outcome of random variable x_n . Collection of random variables is a random process. Random signals are not summable and have no direct Fourier transform, but can be summarized in terms of an autocorrelation and/or autocovariance sequence and FT may be used for these. Fourier transform of the autocorrelation sequence: useful for frequency distribution of power in signal, effect of the system on the autocorrelation sequence.

Input signal characterized by mean m_x and autocorrelation function $\phi_{xx}[m]$. Or, there is 1^{st} or 2^{nd} order probability distributions.

Means of input and output:

$$\begin{split} m_{xn} &= E\{x_n\}, & m_{yn} &= E\{y_n\}, & \text{which follows:} \\ m_x[n] &= E\{x[n]\}, & m_y[n] &= E\{y[n]\}. \end{split}$$

If x[n] is stationary, $m_x[n] = m_x$.

Mean of output process:
$$m_y[n] = \mathbb{E}\{y[n]\} = \sum_{k=-\infty}^{\infty} h[k] \ E\{x[n-k]\} = m_x \sum_{k=-\infty}^{\infty} h[k]$$

Output being non-stationary, Autocorrelation of output process:

$$\phi_{xx}[n,n+m] = E\{y[n]y[n+m]\}$$

$$= \sum_{k=-\infty}^{\infty} h[k] \sum_{r=-\infty}^{\infty} h[r] E\{x[n-k]x[n+m-r]\}.$$

Deterministic Autocorrelation sequence, autocorrelation of h[n] in aperiodic, finite energy sequence: $c_{hh}[\ell] = \sum_{k=-\infty}^{\infty} h[k]h[\ell+k].$

Fourier Transform for random input: $\Phi_{yy}(e^{j\omega}) = C_{hh}(e^{j\omega}) \Phi_{xx}(e^{j\omega}) = |H(e^{j\omega})|^2 \Phi_{xx}(e^{j\omega}).$ Power Density Spectrum:

$$\text{E}\{y^2[n]\} = \phi_{yy}[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left| \text{H} \left(e^{j\omega} \right) \right|^2 \, \Phi xx(e^{j\omega}) = \text{total power in output}.$$